1.3 Examples of Progress in Detecting and Attributing Recent - TopicsExpress



          

1.3 Examples of Progress in Detecting and Attributing Recent Climate Change 1.3.1 The Human Fingerprint on Greenhouse Gases The high-accuracy measurements of atmospheric CO2 concentration, initiated by Charles David Keeling in 1958, constitute the master time series documenting the changing composition of the atmosphere (Keeling, 1961, 1998). These data have iconic status in climate change science as evidence of the effect of human activities on the chemical composition of the global atmosphere (see FAQ 7.1). Keeling’s measurements on Mauna Loa in Hawaii provide a true measure of the global carbon cycle, an effectively continuous record of the burning of fossil fuel. They also maintain an accuracy and precision that allow scientists to separate fossil fuel emissions from those due to the natural annual cycle of the biosphere, demonstrating a long-term change in the seasonal exchange of CO2 between the atmosphere, biosphere and ocean. Later observations of parallel trends in the atmospheric abundances of the 13CO2 isotope (Francey and Farquhar, 1982) and molecular oxygen (O2) (Keeling and Shertz, 1992; Bender et al., 1996) uniquely identified this rise in CO2 with fossil fuel burning (Sections 2.3, 7.1 and 7.3). To place the increase in CO2 abundance since the late 1950s in perspective, and to compare the magnitude of the anthropogenic increase with natural cycles in the past, a longer-term record of CO2 and other natural greenhouse gases is needed. These data came from analysis of the composition of air enclosed in bubbles in ice cores from Greenland and Antarctica. The initial measurements demonstrated that CO2 abundances were significantly lower during the last ice age than over the last 10 kyr of the Holocene (Delmas et al., 1980; Berner et al., 1980; Neftel et al., 1982). From 10 kyr before present up to the year 1750, CO2 abundances stayed within the range 280 ± 20 ppm (Indermühle et al., 1999). During the industrial era, CO2 abundance rose roughly exponentially to 367 ppm in 1999 (Neftel et al., 1985; Etheridge et al., 1996; IPCC, 2001a) and to 379 ppm in 2005 (Section 2.3.1; see also Section 6.4). Direct atmospheric measurements since 1970 (Steele et al., 1996) have also detected the increasing atmospheric abundances of two other major greenhouse gases, methane (CH4) and nitrous oxide (N2O). Methane abundances were initially increasing at a rate of about 1% yr–1 (Graedel and McRae, 1980; Fraser et al., 1981; Blake et al., 1982) but then slowed to an average increase of 0.4% yr–1 over the 1990s (Dlugokencky et al., 1998) with the possible stabilisation of CH4 abundance (Section 2.3.2). The increase in N2O abundance is smaller, about 0.25% yr–1, and more difficult to detect (Weiss, 1981; Khalil and Rasmussen, 1988). To go back in time, measurements were made from firn air trapped in snowpack dating back over 200 years, and these data show an accelerating rise in both CH4 and N2O into the 20th century (Machida et al., 1995; Battle et al., 1996). When ice core measurements extended the CH4 abundance back 1 kyr, they showed a stable, relatively constant abundance of 700 ppb until the 19th century when a steady increase brought CH4 abundances to 1,745 ppb in 1998 (IPCC, 2001a) and 1,774 ppb in 2005 (Section 2.3.2). This peak abundance is much higher than the range of 400 to 700 ppb seen over the last half-million years of glacial-interglacial cycles, and the increase can be readily explained by anthropogenic emissions. For N2O the results are similar: the relative increase over the industrial era is smaller (15%), yet the 1998 abundance of 314 ppb (IPCC, 2001a), rising to 319 ppb in 2005 (Section 2.3.3), is also well above the 180-to-260 ppb range of glacial-interglacial cycles (Flückiger et al., 1999; see Sections 2.3, 6.2, 6.3, 6.4, 7.1 and 7.4) Several synthetic halocarbons (chlorofluorocarbons (CFCs), hydrofluorocarbons, perfluorocarbons, halons and sulphur hexafluoride) are greenhouse gases with large global warming potentials (GWPs; Section 2.10). The chemical industry has been producing these gases and they have been leaking into the atmosphere since about 1930. Lovelock (1971) first measured CFC-11 (CFCl3) in the atmosphere, noting that it could serve as an artificial tracer, with its north-south gradient reflecting the latitudinal distribution of anthropogenic emissions. Atmospheric abundances of all the synthetic halocarbons were increasing until the 1990s, when the abundance of halocarbons phased out under the Montreal Protocol began to fall (Montzka et al., 1999; Prinn et al., 2000). In the case of synthetic halocarbons (except perfluoromethane), ice core research has shown that these compounds did not exist in ancient air (Langenfelds et al., 1996) and thus confirms their industrial human origin (see Sections 2.3 and 7.1). At the time of the TAR scientists could say that the abundances of all the well-mixed greenhouse gases during the 1990s were greater than at any time during the last half-million years (Petit et al, 1999), and this record now extends back nearly one million years (Section 6.3). Given this daunting picture of increasing greenhouse gas abundances in the atmosphere, it is noteworthy that, for simpler challenges but still on a hemispheric or even global scale, humans have shown the ability to undo what they have done. Sulphate pollution in Greenland was reversed in the 1980s with the control of acid rain in North America and Europe (IPCC, 2001b), and CFC abundances are declining globally because of their phase-out undertaken to protect the ozone layer. 1.3.2 Global Surface Temperature Shortly after the invention of the thermometer in the early 1600s, efforts began to quantify and record the weather. The first meteorological network was formed in northern Italy in 1653 (Kington, 1988) and reports of temperature observations were published in the earliest scientific journals (e.g., Wallis and Beale, 1669). By the latter part of the 19th century, systematic observations of the weather were being made in almost all inhabited areas of the world. Formal international coordination of meteorological observations from ships commenced in 1853 (Quetelet, 1854). Inspired by the paper Suggestions on a Uniform System of Meteorological Observations (Buys-Ballot, 1872), the International Meteorological Organization (IMO) was formed in 1873. Its successor, the World Meteorological Organization (WMO), still works to promote and exchange standardised meteorological observations. Yet even with uniform observations, there are still four major obstacles to turning instrumental observations into accurate global time series: (1) access to the data in usable form; (2) quality control to remove or edit erroneous data points; (3) homogeneity assessments and adjustments where necessary to ensure the fidelity of the data; and (4) area-averaging in the presence of substantial gaps. Köppen (1873, 1880, 1881) was the first scientist to overcome most of these obstacles in his quest to study the effect of changes in sunspots (Section 2.7). Much of his data came from Dove (1852), but wherever possible he used data directly from the original source, because Dove often lacked information about the observing methods. Köppen considered examination of the annual mean temperature to be an adequate technique for quality control of far distant stations. Using data from more than 100 stations, Köppen averaged annual observations into several major latitude belts and then area-averaged these into a near-global time series shown in Figure 1.3. 1.3 Figure 1.3. Published records of surface temperature change over large regions. Köppen (1881) tropics and temperate latitudes using land air temperature. Callendar (1938) global using land stations. Willett (1950) global using land stations. Callendar (1961) 60°N to 60°S using land stations. Mitchell (1963) global using land stations. Budyko (1969) Northern Hemisphere using land stations and ship reports. Jones et al. (1986a,b) global using land stations. Hansen and Lebedeff (1987) global using land stations. Brohan et al. (2006) global using land air temperature and sea surface temperature data is the longest of the currently updated global temperature time series (Section 3.2). All time series were smoothed using a 13-point filter. The Brohan et al. (2006) time series are anomalies from the 1961 to 1990 mean (°C). Each of the other time series was originally presented as anomalies from the mean temperature of a specific and differing base period. To make them comparable, the other time series have been adjusted to have the mean of their last 30 years identical to that same period in the Brohan et al. (2006) anomaly time series. Callendar (1938) produced the next global temperature time series expressly to investigate the influence of CO2 on temperature (Section 2.3). Callendar examined about 200 station records. Only a small portion of them were deemed defective, based on quality concerns determined by comparing differences with neighbouring stations or on homogeneity concerns based on station changes documented in the recorded metadata. After further removing two arctic stations because he had no compensating stations from the antarctic region, he created a global average using data from 147 stations. Most of Callendar’s data came from World Weather Records (WWR; Clayton, 1927). Initiated by a resolution at the 1923 IMO Conference, WWR was a monumental international undertaking producing a 1,196-page volume of monthly temperature, precipitation and pressure data from hundreds of stations around the world, some with data starting in the early 1800s. In the early 1960s, J. Wolbach had these data digitised (National Climatic Data Center, 2002). The WWR project continues today under the auspices of the WMO with the digital publication of decadal updates to the climate records for thousands of stations worldwide (National Climatic Data Center, 2005). Willett (1950) also used WWR as the main source of data for 129 stations that he used to create a global temperature time series going back to 1845. While the resolution that initiated WWR called for the publication of long and homogeneous records, Willett took this mandate one step further by carefully selecting a subset of stations with as continuous and homogeneous a record as possible from the most recent update of WWR, which included data through 1940. To avoid over-weighting certain areas such as Europe, only one record, the best available, was included from each 10° latitude and longitude square. Station monthly data were averaged into five-year periods and then converted to anomalies with respect to the five-year period 1935 to 1939. Each station’s anomaly was given equal weight to create the global time series. Callendar in turn created a new near-global temperature time series in 1961 and cited Willett (1950) as a guide for some of his improvements. Callendar (1961) evaluated 600 stations with about three-quarters of them passing his quality checks. Unbeknownst to Callendar, a former student of Willett, Mitchell (1963), in work first presented in 1961, had created his own updated global temperature time series using slightly fewer than 200 stations and averaging the data into latitude bands. Landsberg and Mitchell (1961) compared Callendar’s results with Mitchell’s and stated that there was generally good agreement except in the data-sparse regions of the Southern Hemisphere. Meanwhile, research in Russia was proceeding on a very different method to produce large-scale time series. Budyko (1969) used smoothed, hand-drawn maps of monthly temperature anomalies as a starting point. While restricted to analysis of the NH, this map-based approach not only allowed the inclusion of an increasing number of stations over time (e.g., 246 in 1881, 753 in 1913, 976 in 1940 and about 2,000 in 1960) but also the utilisation of data over the oceans (Robock, 1982). Increasing the number of stations utilised has been a continuing theme over the last several decades with considerable effort being spent digitising historical station data as well as addressing the continuing problem of acquiring up-to-date data, as there can be a long lag between making an observation and the data getting into global data sets. During the 1970s and 1980s, several teams produced global temperature time series. Advances especially worth noting during this period include the extended spatial interpolation and station averaging technique of Hansen and Lebedeff (1987) and the Jones et al. (1986a,b) painstaking assessment of homogeneity and adjustments to account for discontinuities in the record of each of the thousands of stations in a global data set. Since then, global and national data sets have been rigorously adjusted for homogeneity using a variety of statistical and metadata-based approaches (Peterson et al., 1998). One recurring homogeneity concern is potential urban heat island contamination in global temperature time series. This concern has been addressed in two ways. The first is by adjusting the temperature of urban stations to account for assessed urban heat island effects (e.g., Karl et al., 1988; Hansen et al., 2001). The second is by performing analyses that, like Callendar (1938), indicate that the bias induced by urban heat islands in the global temperature time series is either minor or non-existent (Jones et al., 1990; Peterson et al., 1999). As the importance of ocean data became increasingly recognised, a major effort was initiated to seek out, digitise and quality-control historical archives of ocean data. This work has since grown into the International Comprehensive Ocean-Atmosphere Data Set (ICOADS; Worley et al., 2005), which has coordinated the acquisition, digitisation and synthesis of data ranging from transmissions by Japanese merchant ships to the logbooks of South African whaling boats. The amount of sea surface temperature (SST) and related data acquired continues to grow. As fundamental as the basic data work of ICOADS was, there have been two other major advances in SST data. The first was adjusting the early observations to make them comparable to current observations (Section 3.2). Prior to 1940, the majority of SST observations were made from ships by hauling a bucket on deck filled with surface water and placing a thermometer in it. This ancient method eventually gave way to thermometers placed in engine cooling water inlets, which are typically located several metres below the ocean surface. Folland and Parker (1995) developed an adjustment model that accounted for heat loss from the buckets and that varied with bucket size and type, exposure to solar radiation, ambient wind speed and ship speed. They verified their results using time series of night marine air temperature. This adjusted the early bucket observations upwards by a few tenths of a degree celsius. Most of the ship observations are taken in narrow shipping lanes, so the second advance has been increasing global coverage in a variety of ways. Direct improvement of coverage has been achieved by the internationally coordinated placement of drifting and moored buoys. The buoys began to be numerous enough to make significant contributions to SST analyses in the mid-1980s (McPhaden et al., 1998) and have subsequently increased to more than 1,000 buoys transmitting data at any one time. Since 1982, satellite data, anchored to in situ observations, have contributed to near-global coverage (Reynolds and Smith, 1994). In addition, several different approaches have been used to interpolate and combine land and ocean observations into the current global temperature time series (Section 3.2). To place the current instrumental observations into a longer historical context requires the use of proxy data (Section 6.2). Figure 1.3 depicts several historical ‘global’ temperature time series, together with the longest of the current global temperature time series, that of Brohan et al. (2006; Section 3.2). While the data and the analysis techniques have changed over time, all the time series show a high degree of consistency since 1900. The differences caused by using alternate data sources and interpolation techniques increase when the data are sparser. This phenomenon is especially illustrated by the pre-1880 values of Willett’s (1950) time series. Willett noted that his data coverage remained fairly constant after 1885 but dropped off dramatically before that time to only 11 stations before 1850. The high degree of agreement between the time series resulting from these many different analyses increases the confidence that the changes they are indicating are real. Despite the fact that many recent observations are automatic, the vast majority of data that go into global surface temperature calculations – over 400 million individual readings of thermometers at land stations and over 140 million individual in situ SST observations – have depended on the dedication of tens of thousands of individuals for well over a century. Climate science owes a great debt to the work of these individual weather observers as well as to international organisations such as the IMO, WMO and the Global Climate Observing System, which encourage the taking and sharing of high-quality meteorological observations. While modern researchers and their institutions put a great deal of time and effort into acquiring and adjusting the data to account for all known problems and biases, century-scale global temperature time series would not have been possible without the conscientious work of individuals and organisations worldwide dedicated to quantifying and documenting their local environment (Section 3.2). 1.3.3 Detection and Attribution Using knowledge of past climates to qualify the nature of ongoing changes has become a concern of growing importance during the last decades, as reflected in the successive IPCC reports. While linked together at a technical level, detection and attribution have separate objectives. Detection of climate change is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Attribution of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence. Using traditional approaches, unequivocal attribution would require controlled experimentation with our climate system. However, with no spare Earth with which to experiment, attribution of anthropogenic climate change must be pursued by: (a) detecting that the climate has changed (as defined above); (b) demonstrating that the detected change is consistent with computer model simulations of the climate change ‘signal’ that is calculated to occur in response to anthropogenic forcing; and (c) demonstrating that the detected change is not consistent with alternative, physically plausible explanations of recent climate change that exclude important anthropogenic forcings. Both detection and attribution rely on observational data and model output. In spite of the efforts described in Section 1.3.2, estimates of century-scale natural climate fluctuations remain difficult to obtain directly from observations due to the relatively short length of most observational records and a lack of understanding of the full range and effects of the various and ongoing external influences. Model simulations with no changes in external forcing (e.g., no increases in atmospheric CO2 concentration) provide valuable information on the natural internal variability of the climate system on time scales of years to centuries. Attribution, on the other hand, requires output from model runs that incorporate historical estimates of changes in key anthropogenic and natural forcings, such as well-mixed greenhouse gases, volcanic aerosols and solar irradiance. These simulations can be performed with changes in a single forcing only (which helps to isolate the climate effect of that forcing), or with simultaneous changes in a whole suite of forcings. In the early years of detection and attribution research, the focus was on a single time series – the estimated global-mean changes in the Earth’s surface temperature. While it was not possible to detect anthropogenic warming in 1980, Madden and Ramanathan (1980) and Hansen et al. (1981) predicted it would be evident at least within the next two decades. A decade later, Wigley and Raper (1990) used a simple energy-balance climate model to show that the observed change in global-mean surface temperature from 1867 to 1982 could not be explained by natural internal variability. This finding was later confirmed using variability estimates from more complex coupled ocean-atmosphere general circulation models (e.g., Stouffer et al., 1994). As the science of climate change progressed, detection and attribution research ventured into more sophisticated statistical analyses that examined complex patterns of climate change. Climate change patterns or ‘fingerprints’ were no longer limited to a single variable (temperature) or to the Earth’s surface. More recent detection and attribution work has made use of precipitation and global pressure patterns, and analysis of vertical profiles of temperature change in the ocean and atmosphere. Studies with multiple variables make it easier to address attribution issues. While two different climate forcings may yield similar changes in global mean temperature, it is highly unlikely that they will produce exactly the same ‘fingerprint’ (i.e., climate changes that are identical as a function of latitude, longitude, height, season and history over the 20th century). Such model-predicted fingerprints of anthropogenic climate change are clearly statistically identifiable in observed data. The common conclusion of a wide range of fingerprint studies conducted over the past 15 years is that observed climate changes cannot be explained by natural factors alone (Santer et al., 1995, 1996a,b,c; Hegerl et al., 1996, 1997, 2000; Hasselmann, 1997; Barnett et al., 1999; Tett et al., 1999; Stott et al., 2000). A substantial anthropogenic influence is required in order to best explain the observed changes. The evidence from this body of work strengthens the scientific case for a discernible human influence on global climate.
Posted on: Sat, 03 Aug 2013 14:53:29 +0000

Trending Topics



Recently Viewed Topics




© 2015