An Abstract Class Example In an object-oriented drawing - TopicsExpress



          

An Abstract Class Example In an object-oriented drawing application, you can draw circles, rectangles, lines, Bezier curves, and many other graphic objects. These objects all have certain states (for example: position, orientation, line color, fill color) and behaviors (for example: moveTo, rotate, resize, draw) in common. Some of these states and behaviors are the same for all graphic objects—for example: position, fill color, and moveTo. Others require different implementations—for example, resize or draw. All GraphicObjects must know how to draw or resize themselves; they just differ in how they do it. This is a perfect situation for an abstract superclass. You can take advantage of the similarities and declare all the graphic objects to inherit from the same abstract parent object—for example, GraphicObject, as shown in the following figure. Classes Rectangle, Line, Bezier, and Circle inherit from GraphicObject Classes Rectangle, Line, Bezier, and Circle inherit from GraphicObject First, you declare an abstract class, GraphicObject, to provide member variables and methods that are wholly shared by all subclasses, such as the current position and the moveTo method. GraphicObject also declares abstract methods for methods, such as draw or resize, that need to be implemented by all subclasses but must be implemented in different ways. The GraphicObject class can look something like this: abstract class GraphicObject { int x, y; ... void moveTo(int newX, int newY) { ... } abstract void draw(); abstract void resize(); } Each non-abstract subclass of GraphicObject, such as Circle and Rectangle, must provide implementations for the draw and resize methods: class Circle extends GraphicObject { void draw() { ... } void resize() { ... } } class Rectangle extends GraphicObject { void draw() { ... } void resize() { ... } } When an Abstract Class Implements an Interface In the section on Interfaces, it was noted that a class that implements an interface must implement all of the interfaces methods. It is possible, however, to define a class that does not implement all of the interface methods, provided that the class is declared to be abstract. For example, abstract class X implements Y { // implements all but one method of Y } class XX extends X { // implements the remaining method in Y } In this case, class X must be abstract because it does not fully implement Y, but class XX does, in fact, implement Y.
Posted on: Sun, 10 Nov 2013 16:02:02 +0000

Trending Topics



Recently Viewed Topics




© 2015