History of telecommunication Telecommunication began with the - TopicsExpress



          

History of telecommunication Telecommunication began with the use of smoke signals and drums in Africa, the Americas and parts of Asia. In the 1790s, the first fixed semaphore systems emerged in Europe; however it was not until the 1830s that electrical telecommunication systems started to appear. This article details the history of telecommunication and the individuals who helped make telecommunication systems what they are today. The history of telecommunication is an important part of the larger history of communication. Early telecommunications included smoke signals and drums. Talking drums were used by natives in Africa, New Guinea and South America, and smoke signals in North America and China. Contrary to what one might think, these systems were often used to do more than merely announce the presence of a military camp. In 1792, a French engineer, Claude Chappe built the first visual telegraphy (or semaphore) system between Lille and Paris. This was followed by a line from Strasbourg to Paris. In 1794, a Swedish engineer, Abraham Edelcrantz built a quite different system from Stockholm to Drottningholm. As opposed to Chappes system which involved pulleys rotating beams of wood, Edelcrantzs system relied only upon shutters and was therefore faster. However semaphore as a communication system suffered from the need for skilled operators and expensive towers often at intervals of only ten to thirty kilometres (six to nineteen miles). As a result, the last commercial line was abandoned in 1880. A very early experiment in electrical telegraphy was an electrochemical telegraph created by the German physician, anatomist and inventor Samuel Thomas von Sömmerring in 1809, based on an earlier, less robust design of 1804 by Spanish polymath and scientist Francisco Salva Campillo. Both their designs employed multiple wires (up to 35) in order to visually represent almost all Latin letters and numerals. Thus, messages could be conveyed electrically up to a few kilometers (in von Sömmerrings design), with each of the telegraph receivers wires immersed in a separate glass tube of acid. An electrical current was sequentially applied by the sender through the various wires representing each digit of a message; at the recipients end the currents electrolysed the acid in the tubes in sequence, releasing streams of hydrogen bubbles next to each associated letter or numeral. The telegraph receivers operator would visually observe the bubbles and could then record the transmitted message, albeit at a very low baud rate.[5] The principal disadvantage to the system was its prohibitive cost, due to having to manufacture and string-up the multiple wire circuits it employed, as opposed to the single wire (with ground return) used by later telegraphs. The first commercial electrical telegraph was constructed in England by Sir Charles Wheatstone and Sir William Fothergill Cooke. It used the deflection of needles to represent messages and started operating over twenty-one kilometres (thirteen miles) of the Great Western Railway on 9 April 1839. Both Wheatstone and Cooke viewed their device as an improvement to the [existing] electromagnetic telegraph not as a new device. On the other side of the Atlantic Ocean, Samuel Morse independently developed a version of the electrical telegraph that he unsuccessfully demonstrated on 2 September 1837. Soon after he was joined by Alfred Vail who developed the register — a telegraph terminal that integrated a logging device for recording messages to paper tape. This was demonstrated successfully over three miles (five kilometres) on 6 January 1838 and eventually over forty miles (sixty-four kilometres) between Washington, D.C. and Baltimore on 24 May 1844. The patented invention proved lucrative and by 1851 telegraph lines in the United States spanned over 20,000 miles (32,000 kilometres). The first successful transatlantic telegraph cable was completed on 27 July 1866, allowing transatlantic telecommunication for the first time. Earlier transatlantic cables installed in 1857 and 1858 only operated for a few days or weeks before they failed. The international use of the telegraph has sometimes been dubbed the Victorian Internet The electric telephone was invented in the 1870s, based on earlier work with harmonic (multi-signal) telegraphs. The first commercial telephone services were set up in 1878 and 1879 on both sides of the Atlantic in the cities of New Haven and London. Alexander Graham Bell held the master patent for the telephone that was needed for such services in both countries. The technology grew quickly from this point, with inter-city lines being built and telephone exchanges in every major city of the United States by the mid-1880s. Despite this, transatlantic voice communication remained impossible for customers until January 7, 1927 when a connection was established using radio. However no cable connection existed until TAT-1 was inaugurated on September 25, 1956 providing 36 telephone circuits. In 1880, Bell and co-inventor Charles Sumner Tainter conducted the worlds first wireless telephone call via modulated lightbeams projected by photophones. The scientific principles of their invention would not be utilized for several decades, when they were first deployed in military and fiber-optic communications. Over several years starting in 1894 the Italian inventor Guglielmo Marconi built the first complete, commercially successful wireless telegraphy system based on airborn electromagnetic waves (radio transmission). In December 1901, he would go on to established wireless communication between Britain and Newfoundland, earning him the Nobel Prize in physics in 1909 (which he shared with Karl Braun). In 1900 Reginald Fessenden was able to wirelessly transmit a human voice. On March 25, 1925, Scottish inventor John Logie Baird publicly demonstrated the transmission of moving silhouette pictures at the London department store Selfridges. In October 1925, Baird was successful in obtaining moving pictures with halftone shades, which were by most accounts the first true television pictures. This led to a public demonstration of the improved device on 26 January 1926 again at Selfridges. Bairds first devices relied upon the Nipkow disk and thus became known as the mechanical television. It formed the basis of semi-experimental broadcasts done by the British Broadcasting Corporation beginning September 30, 1929. For most of the twentieth century televisions depended upon the cathode ray tube invented by Karl Braun. The first version of such a television to show promise was produced by Philo Farnsworth and crude silhouette images were demonstrated to his family on September 7, 1927. Farnsworths device would compete with the concurrent work of Kalman Tihanyi and Vladimir Zworykin. Though the execution of the device was not yet what everyone hoped it could be, it earned Farnsworth a small production company. In 1934, he gave the first public demonstration of the television at Philadelphias Franklin Institute and opened his own broadcasting station. Zworykins camera, based on Tihanyis Radioskop, which later would be known as the Iconoscope, had the backing of the influential Radio Corporation of America (RCA). In the United States, court action between Farnsworth and RCA would resolve in Farnsworths favour. John Logie Baird switched from mechanical television and became a pioneer of colour television using cathode-ray tubes. After mid-century the spread of coaxial cable and microwave radio relay allowed television networks to spread across even large countries. The development of videotelephony involved the historical development of several technologies which enabled the use of live video in addition to voice telecommunications. The concept of videotelephony was first popularized in the late 1870s in both the United States and Europe, although the basic sciences to permit its very earliest trials would take nearly a half century to be discovered. This was first embodied in the device which came to be known as the video telephone, or videophone, and it evolved from intensive research and experimentation in several telecommunication fields, notably electrical telegraphy, telephony, radio, and television. The development of the crucial video technology first started in the latter half of the 1920s in the United Kingdom and the United States, spurred notably by John Logie Baird and AT&Ts Bell Labs. This occurred in part, at least by AT&T, to serve as an adjunct supplementing the use of the telephone. A number of organizations believed that videotelephony would be superior to plain voice communications. However video technology was to be deployed in analog television broadcasting long before it could become practical—or popular—for videophones. Videotelephony developed in parallel with conventional voice telephone systems from the mid-to-late 20th century. Only in the late 20th century with the advent of powerful video codecs and high-speed broadband did it become a practical technology for regular use. With the rapid improvements and popularity of the Internet, it became widespread thru the use of videoconferencing and webcams, which frequently utilize Internet telephony, and in business, where telepresence technology has helped reduce the need to travel. Satellite Main articles: Communications satellite, Satellite phone, Satellite radio, Satellite television and Satellite Internet access The first U.S. satellite to relay communications was Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower. In 1960 NASA launched an Echo satellite; the 100-foot (30 m) aluminized PET film balloon served as a passive reflector for radio communications. Courier 1B, built by Philco, also launched in 1960, was the worlds first active repeater satellite. Satellites these days are used for many applications such as uses in GPS, television, internet and telephone uses. Telstar was the first active, direct relay commercial communications satellite. Belonging to AT&T as part of a multi-national agreement between AT&T, Bell Telephone Laboratories, NASA, the British General Post Office, and the French National PTT (Post Office) to develop satellite communications, it was launched by NASA from Cape Canaveral on July 10, 1962, the first privately sponsored space launch. Relay 1 was launched on December 13, 1962, and became the first satellite to broadcast across the Pacific on November 22, 1963. The first and historically most important application for communication satellites was in intercontinental long distance telephony. The fixed Public Switched Telephone Network relays telephone calls from land line telephones to an earth station, where they are then transmitted a receiving satellite dish via a geostationary satellite in Earth orbit. Improvements in submarine communications cables, through the use of fiber-optics, caused some decline in the use of satellites for fixed telephony in the late 20th century, but they still exclusively service remote islands such as Ascension Island, Saint Helena, Diego Garcia, and Easter Island, where no submarine cables are in service. There are also some continents and some regions of countries where landline telecommunications are rare to nonexistent, for example Antarctica, plus large regions of Australia, South America, Africa, Northern Canada, China, Russia and Greenland. After commercial long distance telephone service was established via communication satellites, a host of other commercial telecommunications were also adapted to similar satellites starting in 1979, including mobile satellite phones, satellite radio, satellite television and satellite Internet access. The earliest adaption for most such services occurred in the 1990s as the pricing for commercial satellite transponder channels continued to drop significantly. On September 11, 1940, George Stibitz was able to transmit problems using teletype to his Complex Number Calculator in New York and receive the computed results back at Dartmouth College in New Hampshire. This configuration of a centralized computer or mainframe with remote dumb terminals remained popular throughout the 1950s. However it was not until the 1960s that researchers started to investigate packet switching — a technology that would allow chunks of data to be sent to different computers without first passing through a centralized mainframe. A four-node network emerged on December 5, 1969 between the University of California, Los Angeles, the Stanford Research Institute, the University of Utah and the University of California, Santa Barbara. This network would become ARPANET, which by 1981 would consist of 213 nodes. In June 1973, the first non-US node was added to the network belonging to Norways NORSAR project. This was shortly followed by a node in London. ARPANETs development centred around the Request for Comment process and on April 7, 1969, RFC 1⁠ was published. This process is important because ARPANET would eventually merge with other networks to form the Internet and many of the protocols the Internet relies upon today were specified through this process. In September 1981, RFC 791⁠ introduced the Internet Protocol v4 (IPv4) and RFC 793⁠ introduced the Transmission Control Protocol (TCP) — thus creating the TCP/IP protocol that much of the Internet relies upon today. A more relaxed transport protocol that, unlike TCP, did not guarantee the orderly delivery of packets called the User Datagram Protocol (UDP) was submitted on 28 August 1980 as RFC 768⁠. An e-mail protocol, SMTP, was introduced in August 1982 by RFC 821⁠ and 1.0 a protocol that would make the hyperlinked Internet possible was introduced on May 1996 by RFC 1945⁠. However not all important developments were made through the Request for Comment process. Two popular link protocols for local area networks (LANs) also appeared in the 1970s. A patent for the Token Ring protocol was filed by Olof Söderblom on October 29, 1974. And a paper on the Ethernet protocol was published by Robert Metcalfe and David Boggs in the July 1976 issue of Communications of the ACM. Internet access became widespread late in the century, using the old telephone and television networks.
Posted on: Tue, 08 Jul 2014 10:51:50 +0000

Trending Topics



Recently Viewed Topics




© 2015