Manganese: Manganese is an important metal for human health, - TopicsExpress



          

Manganese: Manganese is an important metal for human health, being absolutely necessary for development, metabolism, and the antioxidant system. Nevertheless, excessive exposure or intake may lead to a condition known as manganism, a neurodegenerative disorder that causes dopaminergic neuronal death and parkinsonian- like symptoms.[21][44] The classes of enzymes that have manganese cofactors are very broad, and include oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, lectins, and integrins. The reverse transcriptases of many retroviruses (though not lentiviruses such as HIV) contain manganese. The best-known manganese-containing polypeptides may be arginase, the diphtheria toxin, and Mn-containing superoxide dismutase (Mn-SOD).[45] Mn-SOD is the type of SOD present in eukaryotic mitochondria, and also in most bacteria (this fact is in keeping with the bacterial-origin theory of mitochondria). The Mn-SOD enzyme is probably one of the most ancient, for nearly all organisms living in the presence of oxygen use it to deal with the toxic effects of superoxide (O− 2), formed from the 1-electron reduction of dioxygen. Exceptions include a few kinds of bacteria, such as Lactobacillus plantarum and related lactobacilli, which use a different nonenzymatic mechanism, involving manganese (Mn2+) ions complexed with polyphosphate directly for this task, indicating how this function possibly evolved in aerobic life. The manganese dietary reference intake for a 44 y.o. human male is 2.3 mg per day from food, with 11 mg estimated as the tolerable upper limit for daily intake to avoid toxicity. Estimates for females and children are generally less.[46] The essential minimum intake is unknown since manganese deficiency is so rare. The human body contains about 12 mg of manganese, which is stored mainly in the bones. The remaining manganese in soft tissue is mostly concentrated in the liver and kidneys.[21] In the human brain, the manganese is bound to manganese metalloproteins, most notably glutamine synthetase in astrocytes.[47] Manganese is also important in photosynthetic oxygen evolution in chloroplasts in plants. The oxygen-evolving complex (OEC) is a part of photosystem II contained in the thylakoid membranes of chloroplasts; it is responsible for the terminal photooxidation of water during the light reactions of photosynthesis, and has a metalloenzyme core containing four atoms of manganese.[48] For this reason, most broad-spectrum plant fertilizers contain manganese. Precautions Manganese compounds are less toxic than those of other widespread metals, such as nickel and copper.[49] However, exposure to manganese dusts and fumes should not exceed the ceiling value of 5 mg/m3 even for short periods because of its toxicity level.[50] Manganese poisoning has been linked to impaired motor skills and cognitive disorders.[51] The permanganate exhibits a higher toxicity than the manganese(II) compounds. The fatal dose is about 10 g, and several fatal intoxications have occurred. The strong oxidative effect leads to necrosis of the mucous membrane. For example, the esophagus is affected if the permanganate is swallowed. Only a limited amount is absorbed by the intestines, but this small amount shows severe effects on the kidneys and on the liver.[52][53] In 2005, a study suggested a possible link between manganese inhalation and central nervous system toxicity in rats.[54] Manganese exposure in United States is regulated by Occupational Safety and Health Administration.[55] Generally, exposure to ambient Mn air concentrations in excess of 5 μg Mn/m3 can lead to Mn-induced symptoms. Increased ferroportin protein expression in human embryonic kidney (HEK293) cells is associated with decreased intracellular Mn concentration and attenuated cytotoxicity, characterized by the reversal of Mn-reduced glutamate uptake and diminished lactate dehydrogenase leakage.[56] Environmental health concerns Manganese in drinking water Waterborne manganese has a greater bioavailability than dietary manganese. According to results from a 2010 study,[57] higher levels of exposure to manganese in drinking water are associated with increased intellectual impairment and reduced intelligence quotients in school-age children. It is hypothesized that long-term exposure to the naturally occurring manganese in shower water puts up to 8.7 million Americans at risk.[54][58][59] Manganese in gasoline Methylcyclopentadienyl manganese tricarbonyl (MMT) is a gasoline additive used to replace lead compounds for unleaded gasolines, to improve the octane number in low octane number petrol distillates. It functions as an antiknock agent by the action of the carbonyl groups. Fuels containing manganese tend to form manganese carbides, which damage exhaust valves. The need to use lead or manganese compounds is merely historic, as the availability of reformation processes which create high-octane rating fuels increased. The use of such fuels directly or in mixture with non-reformed distillates is universal in developed countries (EU, Japan, etc.). In USA the imperative to provide the lowest possible price per volume on motor fuels (low fuel taxation rate) and lax legislation of fuel content (before 2000) caused refineries to use MMT. Compared to 1953, levels of manganese in air have dropped.[60] Many racing competitions specifically ban manganese compounds in racing fuel (cart, minibike). MMT contains 24.4–25.2% manganese. There is strong correlation between elevated atmospheric manganese concentrations and automobile traffic density. Role in neurological disorders Manganism Main article: Manganism Manganese overexposure is most frequently associated with manganism, a rare neurological disorder associated with excessive manganese ingestion or inhalation. Historically, persons employed in the production or processing of manganese alloys[61][62] have been at risk for developing manganism; however, current health and safety regulations protect workers in developed nations.[55] The disorder was first described in 1837 by British academic John Couper, who studied two patients who were manganese grinders.[18] Manganism is a biphasic disorder. In its early stages, an intoxicated person may experience depression, mood swings, compulsive behaviors, and psychosis. Early neurological symptoms give way to late-stage manganism, which resembles Parkinsons disease. Symptoms include weakness, monotone and slowed speech, an expressionless face, tremor, forward-leaning gait, inability to walk backwards without falling, rigidity, and general problems with dexterity, gait and balance.[18][63] Unlike Parkinsons disease, manganism is not associated with loss of smell and patients are typically unresponsive to treatment with L-DOPA.[64] Symptoms of late-stage manganism become more severe over time even if the source of exposure is removed and brain manganese levels return to normal.[63] Childhood developmental disorders Several recent studies attempt to examine the effects of chronic low-dose manganese overexposure on development in children. The earliest study of this kind was conducted in the Chinese province of Shanxi. Drinking water there had been contaminated through improper sewage irrigation and contained 240–350 µg Mn/L. Although WMn concentrations at or below 300 µg Mn/L are considered safe by the US EPA and 400 µg Mn/L are considered safe by the World Health Organization, the 92 children sampled (between 11 and 13 years of age) from this province displayed lower performance on tests of manual dexterity and rapidity, short-term memory, and visual identification when compared to children from an uncontaminated area. More recently, a study of 10-year-old children in Bangladesh showed a relationship between WMn concentration in well water and diminished IQ scores. A third study conducted in Quebec examined school children between the ages of 6 and 15 living in homes that received water from a well containing 610 µg Mn/L; controls lived in homes that received water from a 160 µg Mn/L well. Children in the experimental group showed increased hyperactive and oppositional behaviors. Neurodegenerative diseases: A protein called DMT1 is the major transporter involved in manganese absorption from the intestine, and may be the major transporter of manganese across the blood–brain barrier. DMT1 also transports inhaled manganese across the nasal epithelium. The putative mechanism of action is that manganese overexposure and/or dysregulation lead to oxidative stress, mitochondrial dysfunction, glutamate-mediated excitoxicity, and aggregation of proteins.
Posted on: Tue, 04 Nov 2014 12:19:01 +0000

Trending Topics



Recently Viewed Topics




© 2015