Types of oil platforms- Fixed Platform - A fixed platform - TopicsExpress



          

Types of oil platforms- Fixed Platform - A fixed platform base under construction on a Louisiana river These platforms are built on concrete or steel legs, or both, anchored directly onto the seabed, supporting a deck with space for drilling rigs, production facilities and crew quarters. Such platforms are, by virtue of their immobility, designed for very long term use (for instance the Hibernia platform). Various types of structure are used, steel jacket, concrete caisson, floating steel and even floating concrete. Steel jackets are vertical sections made of tubular steel members, and are usually piled into the seabed. Concrete caisson structures, pioneered by the Condeep concept, often have in-built oil storage in tanks below the sea surface and these tanks were often used as a flotation capability, allowing them to be built close to shore (Norwegian fjords and Scottish firths are popular because they are sheltered and deep enough) and then floated to their final position where they are sunk to the seabed. Fixed platforms are economically feasible for installation in water depths up to about 520 m (1,710 ft). Compliant Tower- These platforms consist of slender flexible towers and a pile foundation supporting a conventional deck for drilling and production operations. Compliant towers are designed to sustain significant lateral deflections and forces, and are typically used in water depths ranging from 370 to 910 metres (1,210 to 2,990 ft Semi-submersible- These platforms have hulls (columns and pontoons) of sufficient buoyancy to cause the structure to float, but of weight sufficient to keep the structure upright. Semi-submersible platforms can be moved from place to place; can be ballasted up or down by altering the amount of flooding in buoyancy tanks; they are generally anchored by combinations of chain, wire rope or polyester rope, or both, during drilling or production operations, or both, though they can also be kept in place by the use of dynamic positioning. Semi-submersibles can be used in water depths from 60 to 3,000 metres (200 to 10,000 ft Jackup rig- Jack-up Mobile Drilling Units (or jack-ups), as the name suggests, are rigs that can be jacked up above the sea using legs that can be lowered, much like jacks. These MODUs (Mobile Offshore Drilling Units) are typically used in water depths up to 120 metres (390 ft), although some designs can go to 170 m (560 ft) depth. They are designed to move from place to place, and then anchor themselves by deploying the legs to the ocean bottom using a rack and pinion gear system on each leg. Drillship - A drillship is a maritime vessel that has been fitted with drilling apparatus. It is most often used for exploratory drilling of new oil or gas wells in deep water but can also be used for scientific drilling. Early versions were built on a modified tanker hull, but purpose-built designs are used today. Most drillships are outfitted with a dynamic positioning system to maintain position over the well. They can drill in water depths up to 3,700 m (12,100 ft).[7] Floating production - The main types of floating production systems are FPSO (floating production, storage, and offloading system). FPSOs consist of large monohull structures, generally (but not always) shipshaped, equipped with processing facilities. These platforms are moored to a location for extended periods, and do not actually drill for oil or gas. Some variants of these applications, called FSO (floating storage and offloading system) or FSU (floating storage unit), are used exclusively for storage purposes, and host very little process equipment. This is one of the best sources for having floating production. The worlds first floating liquefied natural gas (FLNG) facility is currently under development. See the section on particularly large examples below. Tension-leg platform - TLPs are floating platforms tethered to the seabed in a manner that eliminates most vertical movement of the structure. TLPs are used in water depths up to about 2,000 meters (6,600 feet). The conventional TLP is a 4-column design which looks similar to a semisubmersible. Proprietary versions include the Seastar and MOSES mini TLPs; they are relatively low cost, used in water depths between 180 and 1,300 metres (590 and 4,270 ft). Mini TLPs can also be used as utility, satellite or early production platforms for larger deepwater discoveries. Gravity-based structure- A GBS can either be steel or concrete and is usually anchored directly onto the seabed. Steel GBS are predominantly used when there is no or limited availability of crane barges to install a conventional fixed offshore platform, for example in the Caspian Sea. There are several steel GBS in the world today (e.g. offshore Turkmenistan Waters (Caspian Sea) and offshore New Zealand). Steel GBS do not usually provide hydrocarbon storage capability. It is mainly installed by pulling it off the yard, by either wet-tow or/and dry-tow, and self-installing by controlled ballasting of the compartments with sea water. To position the GBS during installation, the GBS may be connected to either a transportation barge or any other barge (provided it is large enough to support the GBS) using strand jacks. The jacks shall be released gradually whilst the GBS is ballasted to ensure that the GBS does not sway too much from target location. Devils Tower spar platform - Spars are moored to the seabed like TLPs, but whereas a TLP has vertical tension tethers, a spar has more conventional mooring lines. Spars have to-date been designed in three configurations: the conventional one-piece cylindrical hull, the truss spar where the midsection is composed of truss elements connecting the upper buoyant hull (called a hard tank) with the bottom soft tank containing permanent ballast, and the cell spar which is built from multiple vertical cylinders. The spar has more inherent stability than a TLP since it has a large counterweight at the bottom and does not depend on the mooring to hold it upright. It also has the ability, by adjusting the mooring line tensions (using chain-jacks attached to the mooring lines), to move horizontally and to position itself over wells at some distance from the main platform location. The first production spar was Kerr-McGees Neptune, anchored in 590 m (1,940 ft) in the Gulf of Mexico; however, spars (such as Brent Spar) were previously used as FSOs. Enis Devils Tower located in 1,710 m (5,610 ft) of water, in the Gulf of Mexico, was the worlds deepest spar until 2010. The worlds deepest platform is currently the Perdido spar in the Gulf of Mexico, floating in 2,438 meters of water. It is operated by Royal Dutch Shell and was built at a cost of $3 billion.
Posted on: Tue, 09 Dec 2014 09:09:41 +0000

Trending Topics



Recently Viewed Topics




© 2015