Did Snakes Help Build the Primate - TopicsExpress



          

Did Snakes Help Build the Primate Brain? news.sciencemag.org/evolution/2013/10/did-snakes-help-build-primate-brain The sinuous shape triggers a primal jolt of recognition: snake! A new study of the monkey brain suggests that primates are uniquely adapted to recognize the features of this slithering threat and react in a flash. The results lend support to a controversial hypothesis: that primates as we know them would never have evolved without snakes. A tussle with a snake meant almost certain death for our preprimate ancestors. The reptiles slithered through the forests of the supercontinent Gondwana roughly 100 million years ago, squeezing the life out of the tiny rodent-sized mammalian ancestors of modern primates. About 40 million years later, likely after primates had emerged, some snakes began injecting poison, which made them an even deadlier and more immediate threat. Snakes were “the first and most persistent predators” of early mammals, says Lynne Isbell, a behavioral ecologist the University of California, Davis. They were such a critical threat, she has long argued, that they shaped the emergence and evolution of primates. By selecting for traits that helped animals avoid them, snakes ultimately endowed us with forward-facing eyes, for example, and enlarged visual centers deep in our brains that are specialized for picking out specific features in the world around us, such as the general shape of a snake’s body camouflaged among leaves. Isbell published her “Snake Detection Theory” in 2006. To support it, she showed that the rare primates that have not encountered venomous snakes in the course of their evolution, such as lemurs in Madagascar, have poorer vision than those that evolved alongside snakes. “It is a very bold theory,” says Arne Öhman, a psychologist at the Karolinska Institute in Sweden who uses brain imaging and behavior studies to test how humans respond to visual threats. But thus far, he says, there has been little neurobiological evidence for it. Two years ago, neuroscientists at the University of Toyama in Japan and the University of Brasilia in Brazil contacted Isbell, hoping to join her in a search for brain-based evidence. In a paper published online today in the Proceedings of the National Academy of Sciences, the team describes how images of snakes affect the pulvinar—a cluster of neurons in an evolutionarily ancient part of the brain called the thalamus. Pulvinar neurons are believed to help direct our attention using our eyes and recognize a potential threat. Primates have much larger pulvinars than other animals and certain parts of the pulvinar are even unique to primates. According to Isbell’s hypothesis, other mammals that had to contend with snakes were mostly burrowing creatures, and they didn’t rely as heavily on vision as early primates, which rested in trees during the day. While some mammals developed resistance to snake venoms, primates opted for a better detection strategy. To test the snake recognition prowess of the pulvinar, the group inserted electrodes into the brains of two captive-born macaque monkeys who had never encountered the reptiles. They measured the electrical spikes from individual neurons in two regions of the pulvinar while the primates looked at four types of images: snakes both coiled and elongated, macaque faces with both angry and neutral expressions, macaque hands in various positions, and geometric shapes such as circles and stars. They found that images of snakes had a particularly strong and fast-acting effect on pulvinar neurons (1): Of the 91 neurons that became active at some point in the experiment, 40% were “snake-best,” meaning they were more active during snake photos than other images. These neurons also fired more frequently than the ones responding to faces, hands, or shapes. (Neurons responding to angry faces, an important social threat for the highly social macaques, came in second.) Finally, snake-responsive neurons sprang into action more quickly, activating about 15 milliseconds faster than those that responded to angry faces and about 25 milliseconds ahead of the neutral shape-detecting neurons. Isbell calls these findings “the first neuroscientific support” for her snake-centric evolutionary theory. She suspects that our unique pulvinar makes primates most adept among mammals at recognizing snakes, though she acknowledges that prediction still needs testing. There is some evidence that primates are especially skilled at detecting snakes that aren’t moving, she says, and that ability may underlie another primate-specific skill: using vision to guide reaching and grasping movements. (Example: Reach for a banana, but don’t reach toward a slumbering snake.) The results support the idea that primates have built-in mechanisms for recognizing a very specific threat based on its shape, says Isabelle Blanchette, a cognitive psychologist at the University of Quebec, Trois-Rivières, in Canada who studies the role of emotion in how we process information. But she warns that we should resist the urge to extrapolate to humans. Even if we carry these “leftovers from evolution” in the form of snake-sensitive neurons deep in our visual system, higher brain processes, such as learning and memory, may influence our behavior just as much as this deep and instinctive snake sense. “It’s a very important part of the picture, but it is only a part,” she says. Her research has shown that humans aren’t always faster at detecting snakes than other threats, including guns and cars, which we haven’t evolved to fear innately. References 1. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes PNAS October 28, 2013, doi: 10.1073/pnas.1312648110 pnas.org/cgi/doi/10.1073/pnas.1312648110 Significance The present study shows preferential activity of neurons in the medial and dorsolateral pulvinar to images of snakes. Pulvinar neurons responded faster and stronger to snake stimuli than to monkey faces, monkey hands, and geometric shapes, and were sensitive to unmodified and low-pass filtered images but not to high-pass filtered images. These results identify a neurobiological substrate for rapid detection of threatening visual stimuli in primates. Our findings are unique in providing neuroscientific evidence in support of the Snake Detection Theory, which posits that the threat of snakes strongly influenced the evolution of the primate brain. This finding may have great impact on our understanding of the evolution of primates. Abstract Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates’ heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage. Photo: Think fast. The deadly threat of snakes may have driven humans to develop a complex and specialized visual system.
Posted on: Tue, 29 Oct 2013 23:59:22 +0000

Trending Topics



class="stbody" style="min-height:30px;">
It just happens like thunder. Sometimes its that way like a flat
Hanover Lantern 354-8 8x3O.D. Fluted Anchor Base Pole ed6o3w564
Hi! i have a great news for you. Do you know that you can earn
In trying to be correct we substitute the word slum for informal
REACTION DU MODEM CAGNOIS SUITE A L AGRESSION DE LA JEUNE
sycuan casino san diego free play
CAG की एक और नई रिपोर्ट
I have just been reading the account of John the Baptist in the
PRAYER FOR DELIVERANCE OVER STRONGHOLDS IN THE NAME OF JESUS,

Recently Viewed Topics




© 2015