Eutrophication is the addition of artificial or non-artificial - TopicsExpress



          

Eutrophication is the addition of artificial or non-artificial substances, such as nitrates and phosphates, through fertilizers or sewage, to a fresh water system. Negative environmental effects include Hypoxia, or loss of oxygen in the water with severe reductions in fish and other animal populations. Lakes and rivers (as an example) Eutrophication can be human-caused or natural. Untreated sewage effluent and agricultural run-off carrying fertilizers are examples of human-caused eutrophication. However, it also occurs naturally in situations where nutrients accumulate (e.g. depositional environments), or where they flow into systems on an ephemeral basis. Eutrophication generally promotes excessive plant growth and decay, favouring simple algae and plankton over other more complicated plants, and causes a severe reduction in water quality. Enhanced growth of aquatic vegetation or phytoplankton and algal blooms disrupts normal functioning of the ecosystem, causing a variety of problems such as a lack of oxygen needed for fish and shellfish to survive. The water becomes cloudy, typically coloured a shade of green, yellow, brown, or red. Eutrophication also decreases the value of rivers, lakes, and estuaries for recreation, fishing, hunting, and aesthetic enjoyment. Although eutrophication is commonly caused by human activities, it can also be a natural process particularly in lakes. Eutrophy occurs in many lakes in temperate grasslands, for instance. Paleolimnologists now recognise that climate change, geology, and other external influences are critical in regulating the natural productivity of lakes. Some lakes also demonstrate the reverse process (meiotrophication), becoming less nutrient rich with time. Eutrophication can also be a natural process in seasonally inundated tropical floodplains. In the Barotse Floodplain of the Zambezi River, the first floodwaters of the rainy season are usually hypoxic because of material such as cattle manure and previous decay of vegetation which grew during the dry season. These so-called red waters kill many fish. The process can be made worse by the use of fertilizers in crops such as maize, rice, and sugarcane grown on the floodplain. Human activities can accelerate the rate at which nutrients enter ecosystems. Runoff from agriculture and development, pollution from septic systems and sewers, and other human-related activities increase the flow of both inorganic nutrients and organic substances into ecosystems. Elevated levels of atmospheric compounds of nitrogen can increase nitrogen availability. Phosphorus is often regarded as the main culprit in cases of eutrophication in lakes subjected to point source pollution from sewage pipes. The concentration of algae and the trophic state of lakes correspond well to phosphorus levels in water. Studies conducted in the Experimental Lakes Area in Ontario have shown a relationship between the addition of phosphorus and the rate of eutrophication. Humankind has increased the rate of phosphorus cycling on Earth by four times, mainly due to agricultural fertilizer production and application. Between 1950 and 1995, an estimated 600,000,000 tonnes of phosphorus were applied to Earths surface, primarily on croplands. Policy changes to control point sources of phosphorus have resulted in rapid control of eutrophication Eutrophication poses a problem not only to ecosystems, but to humans as well. Reducing eutrophication should be a key concern when considering future policy, and a sustainable solution for everyone, including farmers and ranchers, seems feasible. While eutrophication does pose problems, humans should be aware that natural runoff (which causes algal blooms in the wild) is common in ecosystems and should thus not reverse nutrient concentrations beyond normal levels. EffectivenessCleanup measures have been mostly, but not completely, successful. Finnish phosphorus removal measures started in the mid-1970s and have targeted rivers and lakes polluted by industrial and municipal discharges. These efforts have had a 90% removal efficiency. Still, some targeted point sources did not show a decrease in runoff despite reduction efforts.
Posted on: Sat, 22 Nov 2014 09:35:01 +0000

Trending Topics



Recently Viewed Topics




© 2015