O Computador Quântico da IBM ! O computador quântico da IBM foi - TopicsExpress



          

O Computador Quântico da IBM ! O computador quântico da IBM foi implementado através de uma molécula com 7 spins: o núcleo da molécula era constituído por 5 átomos de fluorina e 2 átomos de carbono. A programação do computador é feita através de pulsos de rádio-freqüência. A leitura dos resultados é feita por ressonância magnética nuclear (RMN), a mesma tecnologia dos aparelhos de tomografia computadorizada de hospitais. A operação do computador exige temperaturas baixas, a fim de reduzir a incidência de erros. Problemas A principal dificuldade enfrentada na construção de um computador quântico é a alta incidência de erros. Entre as causas dos erros está o próprio ambiente: a influência do meio sobre o computador quântico pode causar a alteração de qubits. Esses erros podem causar incoerência no sistema, invalidando toda a computação. Uma dificuldade adicional é, ironicamente, a implicação de um dos princípios da Mecânica Quântica que tornam a Computação Quântica interessante em primeiro lugar. A Física Quântica afirma que o ato de medir ou observar um sistema quântico destrói a superposiçãode estados. Isso quer dizer que, se for feita uma leitura dos dados durante a execução de programa em um computador quântico, todo o processamento será perdido. Assim, a maior dificuldade é conseguir corrigir um erro sem de fato medir o sistema. Isso é conseguido através da coerência de fase. Essa técnica permite a correção de erros sem comprometer o sistema. Para tanto, é utilizada a ressonância magnética nuclear para copiar um único bit de informação quântica de três spins nucleares de moléculas de tricloroetileno. Basicamente, a técnica utiliza a observação indireta para efetuar a correção de erros e manter a coerência do sistema. Tendo em vista todas essas dificuldades é que fica evidente a importância da experiência realizada pela IBM: os cientistas conseguir superar todos esses contratempos e implementar, na prática, o algoritmo de Shor em um computador quântico. O Algoritmo de Shor Desde a proposição da computação quântica por Richard Feymann não houveram muitos avanços significativos na área até 1994. Ano passado, o pesquisador Peter Shor, dos laboratórios da AT&T Bell escreveu um algoritmo que utiliza propriedades do computador quântico para realizar a fatoração de números inteiros grandes (na ordem de 10 elevado a 200 dígitos) em tempo polinomial. Esse algoritmo quântico, que ficou conhecido como algoritmo de Shor, foi publicado no artigo “Algorithms for Quantum Computation: Discrete Logarithms Factoring”. O algoritmo utiliza justamente a propriedade da superposição quântica para conseguir reduzir, através de funções quânticas específicas, a complexidade do tempo de solução do problema de fatoração de exponencial para polinomial. O entendimento das funções quânticas que são utilizadas no algoritmo de Shor requer uma explicação matemática bastante extensa, que fogem do escopo desde texto. A aplicação imediata do algoritmo de Shor é na área de criptografia. A segurança dos sistemas de criptografia de chave pública baseia-se justamente na dificuldade de fatoração de números muito grandes; com a implementação prática de um computador que consiga realizar esses cálculos de forma rápida a segurança desses sistemas de criptografia estará comprometida. O algoritmo de Shor é um marco da computação quântica porque ele foi o primeiro algoritmo a utilizar as funcionalidades particulares de um computador quântico para otimizar a solução de um problema. A publicação do algoritmo de Shor desencadeou uma avalanche de novas pesquisas e experiências na computação quântica. Em dezembro de 2001, cientistas do Centro de Pesquisas da IBM em Almaden conseguiram construir um computador quântico de 7 qubits. Nesse computador foi implementado o algoritmo Shor, que conseguiu realizar corretamente a fatoração do número 15. Obviamente, esse computador não consegue quebrar nenhum sistema de criptografia. A importância desse experimento é que ele comprova a viabilidade da computação quântica. As principais dificuldades enfrentadas nesse primeiro momento são mais tecnológicas do que teóricas, como a alta incidência de erros nos computadores quânticos construídos até agora.
Posted on: Sat, 29 Jun 2013 03:17:04 +0000

Trending Topics



Recently Viewed Topics




© 2015