Sanitizing Chemicals The food industry most often uses sanitizing - TopicsExpress



          

Sanitizing Chemicals The food industry most often uses sanitizing procedures, so the information presented herein will focus on the more common products utilized. Regardless of the product, the sanitizing solution must be tested to verify that the desired concentration is consistently present. Too little sanitizer, of course, can result in unacceptable efficacy, while too much sanitizer can yield residues that do not meet standards. Hypochlorites Effectiveness, low cost and ease of manufacturing make hypochlorites the most widely used sanitizers. Sodium hypochlorite is the most common compound and is an ideal sanitizer, as it is a strong oxidizer. Hypochlorites cause broad microbial mortality by damaging the outer membrane, likely producing a loss of permeability control and eventual lysis of the cell.[4,5] In addition, these compounds inhibit cellular enzymes and destroy DNA. Spores, however, are resistant to hypochlorites, as the spore coat is not susceptible to oxidation except at high concentrations coupled with long contact times at elevated temperatures. While hypochlorites are very reactive, their useful properties are negatively impacted by factors such as suspended solids, high temperatures, light, water impurities and improper pH levels. In routine use, surfaces must be as free as possible of organic materials, and the pH must be maintained between 5 to 7 to ensure that the greatest amount of hypochlorous acid is available. As with any sanitizer, measurements must be taken periodically to make certain that the freely available chlorine is at the desired level. For no-rinse applications, the maximum allowable concentration of available chlorine is 200 ppm. Other disadvantages of hypochlorites are corrosiveness to metals, health concerns related to skin irritation and mucous membrane damage and environmental contamination. The latter is of concern as chlorine can combine with organic substances to form toxic chlorinated compounds, such as trihalomethanes and dioxins. Hypochlorite use may be further restricted in the future. Care must be taken when cleaning hypochlorite spills as organic materials such as cloth, sawdust and paper may spontaneously combust upon drying. Chlorine Dioxide This inorganic compound is a broad sanitizer effective against bacteria, fungi and viruses. Chlorine dioxide is an oxidizer that reacts with the proteins and fatty acids within the cell membrane, resulting in loss of permeability control and disruption of protein synthesis.[6,7] While chlorine dioxide is an explosive gas, it is relatively safe in solution. It is produced on-site as it can’t be compressed or stored commercially in gaseous form. Most chlorine dioxide generation is accomplished with complex systems. However, recent advances in formulation procedures allow the production of solutions of chlorine dioxide on-site without the use of expensive equipment. Compared with hypochlorites, chlorine dioxide requires much lower concentrations to achieve microbial mortality. For example, a 5-ppm solution is effective as a sanitizer on food contact surfaces with a contact time of at least 1 minute. Further, disinfection can be achieved with 100 ppm using a contact time of 10 minutes. wla lang yan ass? lang yan ha?....
Posted on: Mon, 08 Jul 2013 07:06:21 +0000

Trending Topics



Recently Viewed Topics




© 2015