Entrepreneurs and Innovators an ideas on how to adapt to the - TopicsExpress



          

Entrepreneurs and Innovators an ideas on how to adapt to the climate change problem?One piece of innovation which has given the financial hub of London protection from sea level rises is the #Thames #Barrier The Thames Barrier is one of the largest movable flood barriers in the world. The Environment Agency runs and maintains the Thames Barrier as well as the London’s other flood defenses. According to some reports a new barrier will in need to be built in the near future to protect the great #City of #London, of course this will come at a serious cost to the tax payer but without these mitigating measure the city would flood. Moving on; Due to climate change, a new report says we can expect to see more lightning—and thus more ozone—over the next century. Add this to rising seas, more intense hurricanes, and more frequent thunderstorms: Climate change will also spark more lightning . The frequency of lightning flashes could rise by an estimated 50 percent across the continental U.S. over the next century, researchers report Thursday in the journal Science. Thats bad news for wildfires across the country. Lightning triggers about half the wildfires in the continental U.S., says lead study author David Romps, an atmospheric scientist at the University of California, Berkeley. (Learn Why Big, Intense Wildfires Are the New Normal.) A warmer atmosphere can hold more moisture, says Romps. And moisture is one of the key ingredients for triggering a lightning strike. Increased lightning will also affect greenhouse gases in our atmosphere, he says, though that could be both a good and a bad thing. The bad: More lightning means more ozone, which is a potent greenhouse gas, Romps says. But on the positive side, lightning also produces compounds called nitrogen oxides, which indirectly reduce levels of methane, another powerful greenhouse gas, says Romps. (See New Report Offers Clearest Picture Yet of Rising Greenhouse Gas Emissions.) Getting Physical Current predictions of lightning frequency are based on the thickness of thunderclouds because observations show that taller clouds generate more lightning, says Romps. Scientists equations make allowances for the fact that this increase in lightning is exponential, rather than a straight one-to-one relationship. The problem, says Romps, is that these estimates dont take into account the many physical factors that can produce lightning, such as how much moisture is in the air or the potential of a thundercloud to generate upward movement of air. This current study incorporates those features into its predictions, says Romps. Alexander Archibald, an atmospheric chemist at Cambridge University in the U.K., notes that Rompss new method includes a scaling feature similar to the corrections used in current methods. Overall, though, the new studys energy-based approach seems like a good contribution for predicting lightning strikes, says Archibald, who was not involved in the research. Where Sparks Fly Lightning forms when a spark travels from a positively or negatively charged area of a cloud to an area with the opposite charge. Vigorous updrafts—the upward movement of air—jostle particles in the cloud, which charges them, says Richard Blakeslee, a lightning researcher at NASAs Marshall Space Flight Center in Huntsville, Alabama. Small ice particles typically take on a positive charge and tend to travel to the tops of clouds on the updrafts. Negative charges end up near the bottoms of such clouds. So Romps and colleagues created a computer model that simulates how much lightning is created based on precipitation (which creates the ice particles) and how much activity (like updrafts) a thunderstorm could produce. When the researchers tested their new method against lightning flash data over the continental U.S. in 2011, they found that the simulation predicted 77 percent of the lightning flashes from that year. The scientists are quick to caution that their results apply only to the continental U.S., based on data from the U.S. National Oceanic and Atmospheric Administration and the National Lightning Detection Network. Rompss next step is to map the predicted increases in lightning strikes. Currently, Florida and states near the Mississippi and Ohio Rivers get the majority of lightning strikes in the U.S., he says. Whether these places will receive even more lightning strikes in the future is anyones guess, Romps says.
Posted on: Fri, 14 Nov 2014 13:50:23 +0000

Trending Topics



Recently Viewed Topics




© 2015