The Science behind Time under Tension and Muscle Failure for - TopicsExpress



          

The Science behind Time under Tension and Muscle Failure for Muscular Hypertrophy by About Lift If your goal is getting bigger, fuller muscles; the most important thing to consider is achieving muscle failure and time under tension. One more thing: If you have read one of those Bullshit articles that tell you “oh, you shouldn’t reach for failure because blah,blah, blah because if you reach for failure your balls will go out of your mouth, etc” read on to know why I called them BS and why those people are either idiots or are simply misleading you away from growth. We have talked about this in our comprehensive post about why eccentric accentuated reps will give you greater muscle gains – since the tension that eccentric contraction gives off more micro-tears to your muscle which your muscle would tend to over-compensate by building larger fibers ONLY after given sufficient time for repair and recovery off course. Today we have a couple of studies to help us prove our point. Here’s one of them entitled “Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men” A single bout of resistance exercise stimulates the synthesis of new muscle proteins. Chronic performance of resistance exercise (i.e. weight training) is what makes your muscles grow bigger; a process known as hypertrophy. However, it is unknown if increasing the time that muscle is under tension will lead to greater increases in muscle protein synthesis. We report that leg extension exercise at 30% of the best effort (which is a load that is comparatively light), with a slow lifting movement (6 s up and 6 s down) performed to fatigue produces greater increases in rates of muscle protein synthesis than the same movement performed rapidly (1 s up and 1 s down). These results suggest that the time the muscle is under tension during exercise may be important in optimizing muscle growth; this understanding enables us to better prescribe exercise to those wishing to build bigger muscles and/or to prevent muscle loss that occurs with ageing or disease. It is important to point out that this study used weight-trained participants knowing this we can rest assured that the results of this study can of much significance to you as a bodybuilder: Eight recreationally resistance-trained men (23.5 ± 1 years (sem); 88.3 ± 5 kg; BMI = 26.5 ± 1.0 kg m−2) were recruited for the study. Participants were habitually active and engaged in lower body resistance exercise at least 2 times per week for ≥2 years at the time of the study. All participants were deemed healthy based on their response to a routine medical screening questionnaire. We chose to recruit resistance-trained subjects to increase the reliability of our strength measurements and to eliminate the potential for non-specific muscle protein synthetic responses due to the novelty of a resistance exercise stimulus. But take note that they also measured the muscle recovery and noted that significant improvements were made at a cellular level with the “Time under tension group”. This further proves that gains from maximizing time under tension during your reps will yield permanent results which is beyond that of a mere “pump”: Keep in mind achieving a “pump” feels good but that is not an indicator of growth or progress at all. In summary, a prolonged muscle time under tension, only when fatigue leads to full motor unit recruitment (Fig. 2A), affects the acute amplitude of muscle protein sub-fractional synthesis (i.e. mitochondria and sarcoplasmic protein pools) and mediates a delayed effect on rates of myofibrillar synthesis during 24–30 h recovery. This delayed effect on myofibrillar protein synthesis rates during longer-term recovery, when accompanied by protein feeding, after fatiguing exercise highlights that separate, yet undefined, mechanisms are facilitating a nutrient enhancing effect on longer-term myofibrillar protein synthetic responses as compared to immediately after resistance exercise. Notable is that our current data highlight, and substantiate our previous findings (Burd et al. 2010b), that maximal fibre activation cannot be viewed as the exclusive driver of myofibrillar protein synthesis rates. It appears exercise volume is yet another fundamental variable that promotes p70S6K phosphorylation (Terzis et al. 2010) and a prolonged elevation of myofibrillar protein synthesis rates (Burd et al. 2010a,b). We are the first to provide a further time course (i.e. 24 h later) of mitochondrial protein synthesis rates after acute resistance exercise and report that low intensity resistance exercise has a potent stimulatory effect on the response at 24–30 h recovery. Additionally, low intensity resistance exercise has the capacity to increase muscle PGC-1α mRNA responses at 6 h post-exercise recovery. Our data provide further evidence of the value of studying muscle protein synthetic responses at the muscle fraction specific level in order to gain a clear understanding of the phenotypic response to an exercise stimulus. Physiol. 2012 January 15; 590(Pt 2): 351–362. Published online 2011 November 21. doi: 10.1113/jphysiol.2011.221200 The only thing that would be missing from that study is that there is no comparison towards reps done with heavier weights. But that is so because the only goal of the researchers was to prove that hypertrophy can be achieved using lower weights (What more with heavy weights). And they did this research under the knowledge that high intensity resistance exercise is an effective stimulus to increase muscle protein synthesis rate (Chesley et al. 1992; Phillips et al. 1997; Kumar et al. 2009). Note: I can now see why doing slow reps with heavier weights give great gains not only in size but also in strength. With that in mind let us take a look at this study: Resistance exercise load does not determine training-mediated hypertrophic gains in young men Published online before print April 19, 2012, doi: 10.1152/japplphysiol.00307.2012 Journal of Applied Physiology April 19, 2012 jap.00307.2012 We have reported that the acute post-exercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21±1 yr, 22.6±2.1 kg∙m-2 means±SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity (% of maximal strength [1RM]) or contraction volume (1 or 3 sets of repetitions): 30%-3, 80%-1 and, 80%-3. Subjects trained each leg with their assigned regime for a period of 10wk, 3 times/wk. We made pre- and post-training measures of strength, muscle volume by magnetic resonance (MR) scans, as well as pre- and post-training biopsies of the vastus lateralis, and a single post-exercise (1h) biopsy following the first bout of exercise, to measure signalling proteins. Training-induced increases in MR-measured muscle volume were significant (P
Posted on: Tue, 27 Jan 2015 11:56:02 +0000

Trending Topics



Recently Viewed Topics




© 2015