> I thought, “This man makes these kinds of decisions every day, - TopicsExpress



          

> I thought, “This man makes these kinds of decisions every day, and obviously he is very good at it. What if I manage to learn to ‘be him’? Even if I don’t know much about the medical aspects of the problem, I could try to learn his methodology following his decision-making process, and then I could use this knowledge to come up with a set of rules.” > I suggested that we play a kind of a game. Sergei had collected data on approximately 270 patients. I chose, randomly, the data for thirty of them and put aside the rest. I would take the history of each of these randomly chosen patients and have Sergei, who was sitting at the opposite corner of the office, ask me questions about the patient, which I would answer by consulting the file. My goal in all this was to try to understand the pattern of his questions (even if I could not possibly know the meaning of these questions as well as he did). For example, sometimes he would ask different questions, or the same questions, but in a different order. In such a case, I would interrupt him: “Last time you did not ask this. Why are you asking it now?” > And he would explain, “Because for the last patient the volume of the kidney was so and so, and this ruled out this scenario. But for the current patient it is so and so, and so this scenario is quite possible.” > I would make notes of all this and try to internalize this information as much as possible. Even so many years later, I can picture it well: Sergei sitting in a chair in the corner of his office, deep in thought, puffing on a cigarette (he was a chain-smoker). It was fascinating to me to try deconstructing the way he thought – it was kind of like trying to undo a jigsaw puzzle to find out what the essential pieces were. > Sergei’s answers gave me extremely valuable information. He would always arrive at the diagnosis after no more than three or four questions. I would then compare it with what actually happened to each patient. He was always spot on. > After a couple dozen cases, I could already make the diagnosis myself, following the simple set of rules that I learned while interrogating him. After half a dozen more, I was practically as good as he was in predicting the outcome. There was in fact a simple algorithm at play that Sergei was following in most cases. [...] > After completing our “game,” I derived an explicit algorithm that I’ve drawn as a decision tree below. From each node of the tree there are two edges down to other nodes; the answer to a specific question at the first node dictates which of the next two possible nodes the user should go to. For example, the first question is about the index of peripheral resistance (PR) of the blood vessel inside the transplant. This was a parameter Sergei himself had come up with in his research. If its value was greater than 0.79, then it was highly likely that the kidney was being rejected, and the patient required immediate surgery. In this case, we move to the black node on the right. Otherwise, we move to the node on the left and ask the next question: what is the volume (V) of the kidney? And so on. Each patient’s data therefore gives rise to a particular path on this tree. The tree terminates after four or fewer steps (it is not important to us at the moment what the remaining two parameters, TP and MPI, were). The terminal node contains the verdict, as shown on this picture: the black node means “operate” and the white node means “do not operate.” > I ran the data of the remaining 240 or so patients, whose files I had put aside, through the algorithm. The agreement was remarkable. In about 95 percent of the cases, it led to an accurate diagnosis. > The algorithm described in simple terms essential points of the thought process of a doctor making the decision, and it showed which parameters describing the patient’s condition were most relevant to the diagnosis. There were only four of them, narrowing down the initial slate of forty or so. For example, the algorithm showed the importance of the index of peripheral resistance that Sergei had developed, measuring the flow of blood through the kidney. That this parameter played such an important role in the decision-making was, by itself, an important discovery. All of this could be used in further research in this area. Other doctors could apply the algorithm to their patients, test, and perhaps fine-tune it to help make it more efficient. > We wrote a paper about this, which became the basis for Sergei’s doctoral thesis, and applied for a patent that was approved a year later.
Posted on: Sat, 28 Jun 2014 17:42:10 +0000

Trending Topics



Recently Viewed Topics




© 2015