Polymer Electrolyte Membrane (PEM) Fuel Cells Diagram: How a - TopicsExpress



          

Polymer Electrolyte Membrane (PEM) Fuel Cells Diagram: How a Polymer Electrolyte Membrane (PEM) fuel cell works. A PEM fuel cell consists of a polymer electrolyte membrane sandwiched between an anode (negatively charged electrode) and a cathode (positively charged electrode). The processes that take place in the fuel cell are as follows: 1. Hydrogen fuel is channeled through field flow plates to the anode on one side of the fuel cell, while oxygen from the air is channeled to the cathode on the other side of the cell. 2. At the anode, a platinum catalyst causes the hydrogen to split into positive hydrogen ions (protons) and negatively charged electrons. 3. The Polymer Electrolyte Membrane (PEM) allows only the positively charged ions to pass through it to the cathode. The negatively charged electrons must travel along an external circuit to the cathode, creating an electrical current. 4. At the cathode, the electrons and positively charged hydrogen ions combine with oxygen to form water, which flows out of the cell.Polymer electrolyte membrane (PEM) fuel cells—also called proton exchange membrane fuel cells—deliver high-power density and offer the advantages of low weight and volume, compared with other fuel cells. PEM fuel cells use a solid polymer as an electrolyte and porous carbon electrodes containing a platinum catalyst. They need only hydrogen, oxygen from the air, and water to operate and do not require corrosive fluids like some fuel cells. They are typically fueled with pure hydrogen supplied from storage tanks or on-board reformers. Sutida Satidu Dalil Radenahmad
Posted on: Tue, 09 Sep 2014 12:00:38 +0000

Trending Topics



Recently Viewed Topics




© 2015