Último teorema de Fermat Pierre de Fermat En teoría de - TopicsExpress



          

Último teorema de Fermat Pierre de Fermat En teoría de números, el último teorema de Fermat, o teorema de Fermat-Wiles, es uno de los teoremas más famosos en la historia de la matemática. Utilizando la notación moderna, se puede enunciar de la siguiente manera: Si n es un número entero mayor que 2, entonces no existen números enteros x, y y z, tales que se cumpla la igualdad: x^n + y^n = z^n , Pierre de Fermat Nótese que n es un entero mayor que 2, y x, y, z, no nulos. Es decir, ni x=0, ni y=0, ni z=0. El teorema fue conjeturado por Pierre de Fermat en 1637, pero no fue demostrado hasta 1995 por Andrew Wiles ayudado por el matemático Richard Taylor. La búsqueda de una demostración estimuló el desarrollo de la teoría algebraica de números en el siglo XIX y la demostración del teorema de la modularidad en el siglo XX. Índice [ocultar] 1 Introducción histórica 2 Historia de la demostración del teorema 2.1 Pierre de Fermat 2.2 Leonhard Euler 2.3 Sophie Germain 2.4 Ernst Kummer y otros 2.5 Andrew Wiles 3 Véase también 4 Referencias 5 Bibliografía 6 Enlaces externos Introducción histórica[editar · editar fuente] La edición de 1670 de la Arithmetica de Diofanto incluye el comentario de Fermat, conocido como "Último teorema" (Observatio Domini Petri de Fermat : Observación del señor Pedro de Fermat). Pierre de Fermat escribió en el margen de su ejemplar de la Arithmetica de Diofanto, traducido por Claude Gaspar Bachet, en el problema que trata sobre escribir un número cuadrado como suma de dos cuadrados (es decir, encontrar ternas pitagóricas): Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet. Es imposible descomponer un cubo en dos cubos, un bicuadrado en dos bicuadrados, y en general, una potencia cualquiera, aparte del cuadrado, en dos potencias del mismo exponente. He encontrado una demostración realmente admirable, pero el margen del libro es muy pequeño para ponerla. Pierre de Fermat1 Historia de la demostración del teorema[editar · editar fuente] Pierre de Fermat[editar · editar fuente] El primer matemático que consiguió avanzar sobre este teorema fue el propio Fermat, que demostró el caso n=4 usando la técnica del descenso infinito, una variante del principio de inducción. Leonhard Euler[editar · editar fuente] Leonhard Euler demostró el caso n = 3. El 4 de agosto de 1735 Euler escribió a Goldbach reclamando tener una demostración para el caso n = 3. En Álgebra (1770) se encontró una falacia en la demostración de Euler. Corregirla directamente era demasiado difícil, pero otros aportes anteriores de Euler permitían encontrar una solución correcta por medios más simples. Por esto se consideró que Euler había demostrado ese caso. Del análisis de la demostración fallida de Euler surgió la evidencia de que ciertos conjuntos de números complejos no se comportaban de igual manera que los enteros. Sophie Germain[editar · editar fuente] El siguiente mayor paso fue hecho por la matemática Sophie Germain. Un caso especial dice que si p y 2p + 1 son ambos primos, entonces la expresión de la conjetura de Fermat para la potencia p implica que uno de los x, y ó z es divisible por p. En consecuencia la conjetura se divide en dos casos: Caso 1: Ninguno de los x, y, z es divisible por p. Caso 2: Uno y sólo uno de x, y, z es divisible por p. Sophie Germain probó el caso 1 para todo p menor que 100 y Adrien-Marie Legendre extendió sus métodos a todos los números menores que 197. Aquí se encontró que el caso 2 no estaba demostrado ni siquiera para p = 5, por lo que fue evidente que era en el caso 2 en el que había que concentrarse. Este caso también se dividía entre varios casos posibles. Ernst Kummer y otros[editar · editar fuente] Cronología2 Año Acontecimiento 1665 Muere Fermat sin dejar constancia de su demostración. 1753 Leonhard Euler demostró el caso n = 3. 1825 Adrien-Marie Legendre demostró el caso para n = 5. 1839 Lamé demostró el caso n=7. 1843 Ernst Kummer afirma haber demostrado el teorema pero Dirichlet encuentra un error. 1995 Andrew Wiles publica la demostración del teorema. No fue hasta 1825 que Peter Gustav Lejeune Dirichlet y Legendre generalizaron para n=5 la demostración de Euler. Lamé demostró el caso n=7 en 1839. Entre 1844 y 1846 Ernst Kummer demostró que la factorización no única podía ser salvada mediante la introducción de números complejos ideales. Un año después Kummer afirma que el número 37 no es un primo regular (Ver: Números de Bernoulli). Luego se encuentra que tampoco 59 y 67 lo son. Kummer, Mirimanoff, Wieferich, Furtwänger, Vandiver y otros extienden la investigación a números más grandes. En 1915 Jensen demuestra que existen infinitos primos irregulares. La investigación se estanca por esta vía de la divisibilidad, a pesar de que se logran comprobaciones para n menor o igual a 4.000.000. Andrew Wiles[editar · editar fuente] En el año 1995 el matemático Andrew Wiles, en un artículo de 98 páginas publicado en Annals of mathematics, demostró el caso semiestable del Teorema de Taniyama-Shimura, anteriormente una conjetura, que engarza las formas modulares y las curvas elípticas. De este trabajo, combinado con ideas de Frey y con el Teorema de Ribet, se desprende la demostración del Último Teorema de Fermat.3 Aunque una versión anterior (no publicada) del trabajo de Wiles contenía un error, este pudo ser corregido en la versión publicada, que consta de dos artículos, el segundo en colaboración con el matemático Richard Taylor. En estos trabajos por primera vez se establecen resultados de modularidad a partir de modularidad residual, por lo cual los resultados del tipo de los probados por Wiles y Taylor son denominados "Teoremas de Levantamiento Modular". En la actualidad resultados de este tipo, mucho más generales y poderosos, han sido probados por varios matemáticos: además de generalizaciones probadas por Wiles en colaboración con C. Skinner y de Taylor en colaboración con M. Harris, los más generales en la actualidad se deben a Mark Kisin. En el trabajo de 1995 de Wiles se abrió una nueva vía, prácticamente una nueva área: la de la modularidad. Con estas técnicas de las que este trabajo fue pionero, más recientemente se han resuelto otras importantes conjeturas, como la Conjetura de Serre y la de Sato-Tate. Curiosamente, la resolución de los primeros casos de la Conjetura de Serre (trabajos de Khare, Wintenberger y Dieulefait), como observara el propio Serre al formular la conjetura, permite una nueva demostración del Último Teorema de Fermat.4 Los trabajos de Wiles por lo tanto tienen una importancia que trasciende ampliamente su aplicación al Último Teorema de Fermat, se consideran centrales en la Geometría Aritmética moderna y se espera que sigan jugando un rol vital en la demostración de resultados de modularidad que se enmarcan en el Programa de Langlands.
Posted on: Sun, 01 Sep 2013 17:30:00 +0000

Trending Topics



Recently Viewed Topics




© 2015