fas.org/spp/military/docops/usaf/2025/v3c15/v3c15-4.htm Chapter - TopicsExpress



          

fas.org/spp/military/docops/usaf/2025/v3c15/v3c15-4.htm Chapter 4 Concept of Operations The essential ingredient of the weather-modification system is the set of intervention techniques used to modify the weather. The number of specific intervention methodologies is limited only by the imagination, but with few exceptions they involve infusing either energy or chemicals into the meteorological process in the right way, at the right place and time. The intervention could be designed to modify the weather in a number of ways, such as influencing clouds and precipitation, storm intensity, climate, space, or fog. Precipitation For centuries man has desired the ability to influence precipitation at the time and place of his choosing. Until recently, success in achieving this goal has been minimal; however, a new window of opportunity may exist resulting from development of new technologies and an increasing world interest in relieving water shortages through precipitation enhancement. Consequently, we advocate that the DOD explore the many opportunities (and also the ramifications) resulting from development of a capability to influence precipitation or conducting selective precipitation modification. Although the capability to influence precipitation over the long term (i.e., for more than several days) is still not fully understood. By 2025 we will certainly be capable of increasing or decreasing precipitation over the short term in a localized area. Before discussing research in this area, it is important to describe the benefits of such a capability. While many military operations may be influenced by precipitation, ground mobility is most affected. Influencing precipitation could prove useful in two ways. First, enhancing precipitation could decrease the enemys trafficability by muddying terrain, while also affecting their morale. Second, suppressing precipitation could increase friendly trafficability by drying out an otherwise muddied area. What is the possibility of developing this capability and applying it to tactical operations by 2025? Closer than one might think. Research has been conducted in precipitation modification for many years, and an aspect of the resulting technology was applied to operations during the Vietnam War.19 These initial attempts provide a foundation for further development of a true capability for selective precipitation modification. Interestingly enough, the US government made a conscious decision to stop building upon this foundation. As mentioned earlier, international agreements have prevented the US from investigating weather-modification operations that could have widespread, long-lasting, or severe effects. However, possibilities do exist (within the boundaries of established treaties) for using localized precipitation modification over the short term, with limited and potentially positive results. These possibilities date back to our own previous experimentation with precipitation modification. As stated in an article appearing in the Journal of Applied Meteorology, [n]early all the weather-modification efforts over the last quarter century have been aimed at producing changes on the cloud scale through exploitation of the saturated vapor pressure difference between ice and water. This is not to be criticized but it is time we also consider the feasibility of weather-modification on other time-space scales and with other physical hypotheses.20 This study by William M. Gray, et al., investigated the hypothesis that significant beneficial influences can be derived through judicious exploitation of the solar absorption potential of carbon black dust.21 The study ultimately found that this technology could be used to enhance rainfall on the mesoscale, generate cirrus clouds, and enhance cumulonimbus (thunderstorm) clouds in otherwise dry areas. The technology can be described as follows. Just as a black tar roof easily absorbs solar energy and subsequently radiates heat during a sunny day, carbon black also readily absorbs solar energy. When dispersed in microscopic or dust form in the air over a large body of water, the carbon becomes hot and heats the surrounding air, thereby increasing the amount of evaporation from the body of water below. As the surrounding air heats up, parcels of air will rise and the water vapor contained in the rising air parcel will eventually condense to form clouds. Over time the cloud droplets increase in size as more and more water vapor condenses, and eventually they become too large and heavy to stay suspended and will fall as rain or other forms of precipitation.22 The study points out that this precipitation enhancement technology would work best upwind from coastlines with onshore flow. Lake-effect snow along the southern edge of the Great Lakes is a naturally occurring phenomenon based on similar dynamics. Can this type of precipitation enhancement technology have military applications? Yes, if the right conditions exist. For example, if we are fortunate enough to have a fairly large body of water available upwind from the targeted battlefield, carbon dust could be placed in the atmosphere over that water. Assuming the dynamics are supportive in the atmosphere, the rising saturated air will eventually form clouds and rainshowers downwind over the land.23 While the likelihood of having a body of water located upwind of the battlefield is unpredictable, the technology could prove enormously useful under the right conditions. Only further experimentation will determine to what degree precipitation enhancement can be controlled. If precipitation enhancement techniques are successfully developed and the right natural conditions also exist, we must also be able to disperse carbon dust into the desired location. Transporting it in a completely controlled, safe, cost-effective, and reliable manner requires innovation. Numerous dispersal techniques have already been studied, but the most convenient, safe, and cost-effective method discussed is the use of afterburner-type jet engines to generate carbon particles while flying through the targeted air. This method is based on injection of liquid hydrocarbon fuel into the afterburners combustion gases. This direct generation method was found to be more desirable than another plausible method (i.e., the transport of large quantities of previously produced and properly sized carbon dust to the desired altitude). The carbon dust study demonstrated that small-scale precipitation enhancement is possible and has been successfully verified under certain atmospheric conditions. Since the study was conducted, no known military applications of this technology have been realized. However, we can postulate how this technology might be used in the future by examining some of the delivery platforms conceivably available for effective dispersal of carbon dust or other effective modification agents in the year 2025. One method we propose would further maximize the technologys safety and reliability, by virtually eliminating the human element. To date, much work has been done on UAVs which can closely (if not completely) match the capabilities of piloted aircraft. If this UAV technology were combined with stealth and carbon dust technologies, the result could be a UAV aircraft invisible to radar while en route to the targeted area, which could spontaneously create carbon dust in any location. However, minimizing the number of UAVs required to complete the mission would depend upon the development of a new and more efficient system to produce carbon dust by a follow-on technology to the afterburner-type jet engines previously mentioned. In order to effectively use stealth technology, this system must also have the ability to disperse carbon dust while minimizing (or eliminating) the UAVs infrared heat source. In addition to using stealth UAV and carbon dust absorption technology for precipitation enhancement, this delivery method could also be used for precipitation suppression. Although the previously mentioned study did not significantly explore the possibility of cloud seeding for precipitation suppression, this possibility does exist. If clouds were seeded (using chemical nuclei similar to those used today or perhaps a more effective agent discovered through continued research) before their downwind arrival to a desired location, the result could be a suppression of precipitation. In other words, precipitation could be forced to fall before its arrival in the desired territory, thereby making the desired territory dry. The strategic and operational benefits of doing this have previously been discussed.
Posted on: Wed, 22 Oct 2014 12:15:17 +0000

Trending Topics



Recently Viewed Topics




© 2015